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Phase diagram of grain boundary facet and line junctions in silicon
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The presence of facets and line junctions connecting facets on grain boundaries (GBs) has a strong impact on
the properties of structural, functional, and optoelectronic materials: They govern the mobility of interfaces, the
segregation of impurities, as well the electronic properties. In the present paper, we employ density-functional
theory and modified embedded atom method calculations to systematically investigate the energetics and
thermodynamic stability of these defects. As a prototype system, we consider �3 tilt GBs in Si. By analyzing
the energetics of different faceted GBs, we derive a diagram that describes and predicts the reconstruction of
these extended defects as a function of facet length and boundary inclination angle. The phase diagram sheds
light upon the fundamental mechanisms causing GB faceting phenomena. It demonstrates that the properties of
faceting are not determined solely by anisotropic GB energies but by a complex interplay between geometry and
microstructure, boundary energies as well as long-range strain interactions.
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I. INTRODUCTION

Crystal defects such as grain boundaries (GBs) severely
impact materials properties [1]. For structural materials, the
Hall-Petch strengthening of metals [2,3] and the brittle frac-
ture induced by preferential segregation of impurities at GBs
[4] are characteristic examples of how GBs affect mechanical
properties. The role of GBs is also substantial in multi- and
polycrystalline optoelectronic materials. Today, multicrys-
talline Si (mc-Si) dominates the Si-based photovoltaics indus-
try thanks to its lower production cost than single-crystal Si.
However, mc-Si has a density of 104 cm−1 GBs [5] and these
defects as well as their interaction with impurities constitute
one major limiting factor in the efficiency of the aforemen-
tioned devices. A prominent example is the recombination of
electrons at GBs. This mechanism constitutes the major elec-
trical losses channel in high-performance mc-Si solar cells [6].
Indeed, GBs often act as strong gettering centers for metal
impurities due to the presence of over- or undercoordinated
atoms and the different-than-bulk strain. These impurities, the
over- or undercoordinated and/or highly strained host atoms
may introduce deep states into the fundamental band gap.
Such states would act as recombination centers and reduce
the efficiency of solar cells [7].

The �3 tilt GBs with 〈110〉 rotation axis in Si constitute
a system of GBs with special fundamental and technolog-
ical interest: �3 GBs constitute up to 80% of GBs in Si
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ingots grown by dendritic casting [8]. These boundaries are
commonly observed to facet toward the low index {111}
and {112} boundaries. The {111} and {112} boundaries
are also formed by the dissociation of higher � value GBs
[9]. The �3{111} twin boundaries are coherent and can be
viewed as hexagonal inclusions into the cubic lattice. These
boundaries have negligible boundary energy, i.e., less than
0.5 meV/Å2 and are electrically inactive. Hence they are
preferred over other electrically active boundaries. On the
other hand, the �3 {112} GBs have two stable/metastable
states, the symmetric (S-�3) and the asymmetric (A-�3),
with the latter having lower energy. The two states of the
�3 {112} GB have different electronic properties. They also
show potential as impurity gettering centers: The presence of
a fivefold coordinated atom and highly strained bonds at the
S-�3 boundary introduces deep states into the fundamental
band gap while the reconstructed A-�3 GB has no deep states
in the gap [10]. Furthermore, density-functional theory (DFT)
calculations show the S-�3 GB to favor interstitial Fe [11]
as well as P and As substitutional [10] segregation. Both
{112} boundaries also show very different site selectivity for
C substitutionals [12].

A striking difference between the A-�3 and S-�3 GBs is
that the latter is commensurate to the underlying coincidence
site lattice (CSL) while the former requires removal of atoms
from the interface area as well as a rigid shift of the one
grain with respect to the other. Recently, a unique anisotropic
segregation mechanism going beyond the classical planar
McLean-type segregation has been demonstrated at faceted
Si GBs [13]. Specifically, by combining DFT with modified
embedded atom method (MEAM) potential calculations, it
was shown that differences in the local atomic geometry at the
�3 {111} and A-�3{112} line junctions associated with the
strain arising from the above-mentioned partial dislocations
are the origin of the aforementioned preferential impurity
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FIG. 1. Schematic representation of a �3 tilt GB (dashed blue
line) inclined by θ with respect to {111} faceted toward {111} and
{112} facets. L{111} and L{112} are the lengths of the {111} and {112}
facets in the {110} plane, respectively, and L is the facet period. F l

denotes the forces acting on the separation line between two facets.
These line forces arise from the discontinuity of the interfacial stress
at the line junctions. b is the Burgers vector of the dislocation and
arises since interfacial translation vectors of {111} and {112} facets
are different.

segregation. However, the driving force that causes faceting
in these system is still an open issue.

Following Herring’s thermodynamic arguments, faceting
of interfaces is primarily driven by a high anisotropy in the
boundary energies and results from the minimization of the
interfacial free energy [14]. The facet length depends not only
on the energy of the facets but on the interaction energy be-
tween dislocations and line forces as well [15,16] (see Fig. 1).
Faceting may also be caused by impurities and/or changes in
composition [17–19]: It has been proposed and demonstrated
that faceting and segregation in alloys are strongly interrelated
and are the result of two coupled energy-reduction mecha-
nisms.

As has already been mentioned, the �3{111} and both the
A-�3 and S-�3 GBs have very different energies (i.e., 0.4
vs 55 and 69 meV/Å2, respectively). This is consistent with
experimental evidence that flat �3 tilt boundaries with the
〈110〉 rotation axis facet toward {111} and {112} boundaries
[13]. However, it is not clear whether this faceting behavior
of Si GBs is an intrinsic property of the GBs, i.e., driven
only by the anisotropy in the boundary energy with respect to
the inclination angle or mediated by impurities/solute atoms.
The presence of stable/metastable reconstructions of the �3
{112} GBs increases the complexity of this system: For small
inclination angles with respect to the {111} plane, the bound-
ary area of the low-energy {111} facets will be considerably
larger than the area of the {112} facets. At these angles, the
interaction between the partial dislocations inherent to the
junctions with A-�3 facets may dominate and constitute the
S-�3 energetically preferential facets. The latter implies that
transitions between facet junction reconstructions may occur,
depending on the inclination angle and the facet period. This
would drastically influence the electronic properties and the
impurity segregation, as well as the GB mobility of faceted �3
GBs. Therefore, a phase diagram of this boundary system that
would describe the facet junction reconstruction as a function
of the inclination angle and the facet period is critical to
understand and control the properties of these boundaries.

To address under what conditions faceting occurs, we in-
vestigate the energetics, atomic structure, and strain distribu-
tion of flat and faceted �3 tilt GBs in Si with the 〈110〉 rotation

axis by employing DFT and large-scale MEAM potential
calculations. In a first step, we have therefore parameterized
a MEAM Si potential. For this, we use a material properties
database derived from our as well as previously reported
DFT calculations as well as reported experimental data. Our
calculations reveal that faceting of tilt �3 GBs is an intrinsic
property of Si and can occur even in the absence of impurity
segregation. However, line junction and facet reconstructions
are found to sensitively depend on the inclination angle and
the facet length.

The paper is organized as follows. In Sec. II, the method-
ology is presented. Section III presents the results on the
energetics, the atomic structure, and the strain associated
with faceted �3 tilt GBs with 〈110〉 rotation axis. Based on
these calculations, a phase diagram is derived that describes
and predicts the facet and line junction reconstructions as a
function of facet period and inclination angles. This phase
diagram is shown to provide implications on GB faceting
and mobility, impurity segregation, and electronic properties.
Finally, Sec. IV summarizes the results. Appendix describes
the parametrization of the MEAM potential.

II. METHODOLOGY

All first-principles calculations were performed by em-
ploying DFT and the projector augmented-wave method
[20,21]. Both local density approximation (LDA) and gen-
eralized gradient approximation (GGA) were employed. A
kinetic energy cutoff of 450 eV was used for the expansion
of the plane-wave basis set. An equivalent of a 6 × 6 × 6
Monkhorst-Pack k-point mesh for the bulk unit cell was used
to sample the Brillouin zone. Atomic positions were relaxed
until the absolute value of the maximum force on all atoms
was less than 0.01 eV/Å.

The generalized stacking fault energies (GSFE) were cal-
culated using a diamond crystal with the three primitive
vectors oriented along 〈110〉, 〈111〉, and 〈112〉. LDA was
used for exchange and correlation. Supercells consisted of
ten unit cells along the surface normal and a 1 × 1 interface
cell. All DFT calculations of the {111}, S-, and A-{112}
�3 GBs were performed using supercells consisting of two
mutually compensated GBs and with a 2 × 2 interface cell.
The separation distance between the two interfaces was larger
than 30 Å. This separation was validated to be large enough to
decouple the two boundaries and to attain boundary energies
with an accuracy better than 0.1 meV/Å2.

All interatomic potential calculations were performed us-
ing the molecular dynamics simulator LAMMPS [22]. The
atomic geometries and energies of flat and faceted GBs
were obtained by simulated annealing within the isothermal-
isobaric ensemble ( NPT). The temperature of the system was
first raised to 700 K. It was then cooled to 0.1 K with a
cooling time of 750 ns. We have explicitly checked that an
order of magnitude slower cooling rate had no effect on both
the energetics and the atomic geometries. The final structures
and energies were then obtained by performing a conjugate
gradient relaxation of the annealed structures. The conjugate
gradient minimization was terminated either when the energy
change was below 10−6 eV or when all atomic forces were
below 10−6 eV/Å.
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FIG. 2. Relaxed atomic geometry of (a) the S-{112} and (b) the
A-{112} GB viewed along 〈110〉. In (a), A and B indicate the five-
and seven-atom rings, respectively. α and β are the atoms which
have to be removed and with a downward shift of the right grain
by 1.743 Å form the A-{112} GB. γ denotes the fivefold coordinate
atom. In (b), C, D, and E indicate the five-, six-, and seven-atom
rings, respectively.

III. RESULTS AND DISCUSSION

In general, five macroscopic degrees of freedom are nec-
essary to define and identify a GB. Three of them define the
misorientation of the two neighboring grains. The other two
define the boundary plane orientation. In addition, to achieve
a complete macroscopic and microscopic description of the
GBs, one has to also consider translations of one grain with
respect to the other, the density, and the exact position of
the atoms at the GB. An illustrative example that the afore-
mentioned five macroscopic parameters alone are inadequate
to provide a full description of the lowest energy structures
of GBs is the �3 {112} GB in Si. The atomic geometry of
this GB as derived by the CSL is shown in Fig. 3(c) and the
relaxed structure in Fig. 2(a). It consists of five- and seven-
atom-rings which are symmetrically aligned with respect to
the (112) plane. One of the atoms at the boundary plane
is overcoordinated, i.e., it has five rather than four bonds.
However, high-resolution transmission electron microscopy

investigations observed another interface reconstruction [23].
This reconstruction is shown in Fig. 2(b) and consists of
five-, six-, and seven-atom rings. Unlike the aforementioned
symmetric geometry, all atoms at the reconstructed 1 × 2
boundary plane are fourfold coordinated. It also lacks the
mirror symmetry. This A-�3 {112} GB in Si indeed has a
smaller boundary energy than the symmetric one as shown by
present and previous DFT calculations [23,24].

In the present paper, we focus on the energetics of �3 tilt
GBs having the 〈110〉 rotational axis. This choice fixes four
out of the five macroscopic degrees of freedom. This leaves
the inclination angle of the boundary plane with respect to
the {111} plane as the only free degree of freedom. To de-
termine the boundary energy along this parameter, we follow
two different approaches. In the first approach, bicrystals are
constructed using the �3 CSL with the 〈110〉 rotation axis.
We consider four different boundary plane inclination angles
(35.26◦, 43.31◦, 54.74◦, and 70.53◦) with respect to the {111}
plane. The two extreme cases, 0◦ and 90◦, correspond to
�3 {111} and S-{112} GBs, respectively. In this approach, the
GB planes always coincide with a CSL plane [see Fig. 3(d)].
Thus, periodic boundary conditions can be applied in any or
all of the three directions [25]. In the second approach, the two
grains are terminated by two free surfaces, which are parallel
to the GB. Periodic boundary conditions are applied in the GB
plane. The thicknesses of the grains normal to the GB range
from ≈100 Å to ≈150 Å. This thickness has been found to
decouple the free surfaces from the boundary.

Next to the five macroscopic degrees of freedom that
are uniquely defined by the above approach, we need to
minimize the GB energy with respect to the microscopic
degrees, i.e., GB translations and atomic densities and posi-
tions. This issue is addressed by a heuristic approach: Using
the above-mentioned bicrystals as input structures, we apply
rigid translations on one grain with respect to the other in
both boundary plane directions. A step width of ax/20 and

<111>

<112>

(a) (b) (c) (d)

<111>

<112>

FIG. 3. (a) Lattice points of the two interpenetrating grains denoted by the open and filled circles comprising the �3 CSL of Si. The
rectangle indicates the unit cell of the CSL. Large and small circles denote points at the two different (110) planes. (b), (c) Schematic
representations of the �3 {111} and �3 S-{112} GBs, respectively. The dashed lines indicate the boundary planes. In (c), the shaded areas
denote the characteristic five- and seven-atom ring pattern of the S-{112} GB. (d) �3 GB inclined by 35.26◦ with respect to {111}. The dashed
line denote the planes of the flat unrelaxed GB and the rectangle the orthogonal unit cell of the corresponding CSL. The shaded regions indicate
the {111} and symmetric {112} facets that are formed after relaxation. The red arrows denote the displacements of atoms that result in the
faceted GB.

083604-3



ALAM, LYMPERAKIS, AND NEUGEBAUER PHYSICAL REVIEW MATERIALS 4, 083604 (2020)

ay/4 is used. Here, ax and ay are the two CSL primitive
vectors in the boundary plane with ax being along 〈110〉. For
each translation, we randomly remove zero to ten atoms from
the 1 × 1 interface. After removing these atoms, we anneal
the structure. We repeat the aforementioned step ten times.
At each of these steps, different combinations of atoms are
randomly removed from the initial structure. The annealing
procedure effectively overcomes any kinetic barriers that may
prevent the system to find its low energy structure. At the
end of each annealing step, conjugate gradient-based atomic
relaxation is performed.

The above approach determines for each of the inclination
angles the GB energy within a grandcanonical ensemble. It is
calculated as

EGB = Etot − nμSi

A
, (1)

where Etot is the total energy of the bicrystal, n denotes the
number of Si atoms, μSi is the chemical potential of bulk
Si, and A is the GB area. To avoid the ambiguity due to the
presence of the free surfaces, we have evaluated the total
energy as the sum of individual atomic energies excluding
all the atoms residing within 5 Å from each surface. We
have explicitly checked the effect of the free surfaces on
the calculated GB energies. We find that the aforementioned
approach yields GB energies with an accuracy better than
0.01 meV/Å2.

In Fig. 4(a), the boundary energies derived by this approach
for a GB with an inclination angle of 35.26◦ are shown. The
calculated boundary energies span a wide energy range from
0.04 eV/Å2 to 5.0 eV/Å2 [for the sake of clarity, the energy
scale in Fig. 4(a) is truncated to 0.20 eV/Å2]. The lowest
energy boundary structure is commensurate to the CSL, i.e.,
it has no rigid shift and no atoms are removed from the initial
CSL based geometry. Let us have a closer look at the relaxed
and unrelaxed geometries of the lowest energy boundary [see
Fig. 3(d)]. Although we started from a flat boundary, the
boundary spontaneously dissociates into {111} and S-{112}
facets. The final structure can be obtained from the initial one
by slightly displacing six atoms per 1 × 1 interface cell. The
displacement vectors are smaller than the bulk lattice constant
[see the red arrows in Fig. 3(d)]. The fact that displacements
are relatively small indicates that kinetic barriers that may
hinder faceting can be overcome by annealing. Furthermore,
by inspecting the lowest energy structures for the other three
inclination angles (i.e., 43.31◦, 62.06◦, and 70.53◦), we find
the same behavior: All these boundaries are energetically
unstable against dissociation into {111} and S-{112} facets.
Facet periods can be as small as a single interface primitive
vector. Hence, this group of GBs is intrinsically unstable
against nanofaceting.

In general, faceting of GBs may be associated with dislo-
cations and line forces. Thus, the facet length is determined
by the competition between the former and the latter [1]. The
character of the dislocations and their Burgers vectors at the
facet junctions are determined by the rigid body translations
of the two facets. The line forces arise from the different
interface stresses at the two facets at the junction. Therefore,
the energy of a faceted GB as a function of the facet period L

FIG. 4. (a) Boundary energies of a �3 tilt GB inclined by 35.26◦

with respect to {111} as function of the rigid shift of one grain with
respect to the other. For each of the rigid shifts, up to ten atoms
have been randomly removed from the 1 × 1 interface cell. The color
coding represents the number of atoms that have been removed. The
unit of the horizontal axis is in ay/20, where ay is the CSL unit vector.
(b) Boundary energies for four different inclination angles (black
dots). The blue dotted curve is the boundary energy calculated by
Eq. (2), neglecting the long-range terms on the right side.

can be written as [1,16]

gfac = gf1 + gf2 + A

L
Ln

(
L

B

)
+ C

L
, (2)

where gf1 and gf2 are the energy contributions of the two
facets. In the case of faceting toward {111} and {112}, these
are written as

gf1 + gf2 = g{111} + g{112} tan (θ )√
1 + tan2 (θ )

, (3)

where g{111} and g{112} are the boundary energies of the flat
{111} and {112} GBs and θ is the angle between the inclined
boundary and the {111} plane. The last two terms on the
right side of Eq. (2) describe the interaction energies between
dislocation and line forces and include contributions from the
core energies. A, B, and C are constants that depend on the
elastic constants of the material and the inclination angle, as
well as the energy and diameter of the cores. A schematic
representation of a faceted GB, indicating the inclination
angle and the facet period, is shown in Fig. 1.

In Fig. 4(b), the energies of faceted GBs with S-{112}
facets for four inclination angles alongside with the facet
contributions, i.e., the sum gf1 + gf2 from Eq. (3), are plot-
ted. The ground-state energies of the calculated faceted GBs
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FIG. 5. Elastic strain component εxx associated with a faceted junction consisting of {111} and (a) S-{112} and (b) A-{112} facets. The
color code is the same in (a) and (b). In (c), the contour lines indicate the elastic strain field derived by elasticity theory for a pair of mutually
compensated edge type dislocations placed at the two junctions. The Burgers vectors of the dislocations are |bx| = 1.743 Å and |by| = 1.03 Å.
Hot/cold colors correspond to positive/negative values, respectively. The value of each contour line differs from its immediate neighboring
lines by ±0.1%. The axes are the longitudinal and transversal coordinates in Å.

coincide with the energy predicted by Eq. (3). This finding
implies that contributions arising from dislocations and/or
line interactions are either negligible or cancel. Indeed, S-
{112} GBs as well as {111} GBs are commensurate to the
CSL. Furthermore, as has already been mentioned, A-�3
{112} GBs are formed from the S-�3 by removing two atoms
per interface unit cell from the boundary plane and applying a
rigid body translation along 〈112〉 and 〈111〉. At the junctions,
however, of {111} and A-�3 facets, these translations include
an edge-type dislocation. Its Burgers vector components are
1.743 Å and 1.03 Å along 〈112〉 and 〈111〉, respectively. S-�3
GBs, on the other hand, are characterized only by a small
translation vector normal to the boundary plane of length
0.03 Å. Therefore, in the case of junctions consisting of {111}
and S-�3 facets, the two right terms in Eq. (2), which account
for the core energies and the long-range interactions between
dislocations and line forces, are expected to be negligible.
In contrast, in the case of A-�3 facets these terms are ex-
pected to be considerable and dominate at small {112} facet
lengths.

To shed light upon the aforementioned long-range inter-
actions, we compute the elastic strain tensor at the facet
junctions. We therefore implemented large supercells consist-
ing of ≈105 atoms and a pair of faceted GBs consisting of
10 and 20 units of {111} and {112} facets, respectively. In
Figs. 5(a) and 5(b), we plot the εxx component of the elastic
strain tensor for facet junctions consisting of {111} and S-
and A-{112} facets, respectively. As can been seen in the
case of S-{112} facets, εxx is negligible everywhere but at the
{111} and {112} boundaries. The tensile strain at the {111}
boundary, which corresponds to a hexagonal inclusion in the
Si diamond matrix, is due to the larger interatomic distance in
hexagonal Si. In the case of A-{112} facets, the strain shows
a long-range behavior. It is in qualitative and quantitative
agreement with the strain field calculated by elasticity theory
for two mutually compensating edge type dislocations placed
at the two junctions [see contour lines in Fig. 5(c)].

To quantify the impact of the long-range interactions of
the dislocations on the GB energetics, we construct faceted
junctions consisting of {111} and A- or S-{112} facets. This

is achieved by inclining the {112} boundaries toward {111}.
The surpercells then contain a pair of symmetry equivalent
and mutually compensated faceted GBs. The separation dis-
tance between the two inclined GBs is at least 100 Å. We
have explicitly checked for convergence at each angle of
inclination by varying the length of the both facets. As in the
first approach, the atomic geometries are relaxed by perform-
ing simulated annealing and subsequent conjugate gradient
atomic relaxation as described in Sec. II. This prevents the
system to get trapped in high energy metastable states. The
GB energies as function of the facet period are plotted in
Fig. 6 for the selected inclination angles of 43.31◦, 62.06◦, and
70.53◦. These correspond to {111} over {112} facet lengths
ratios of 1.5, 0.75, and 0.5, respectively. As can be seen, the
energies of {111} and S-{112} faceted GBs are independent

FIG. 6. GB energies as a function of the facet period for both
S- (open circles) and A-{112} (filled circles) facets with inclination
angles (a) 43.31◦, (b) 62.06◦, and (c) 70.53◦. The continuous curves
are fits to Eq. (2). The fitted parameters are shown in the insets where
R0 = 1 Å. The arrows indicate the asymptotic limit of infinite facet
period. The horizontal dashed lines are linear fits to the boundary
energies of the faceted GBs with S-{112} facets.
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FIG. 7. (a) GB energy as function of the inclination angle for faceted GBs consisting of {111} and S- and A-{112} facets calculated by
the P-MEAM potential. For comparison, the DFT-calculated boundary energies are also plotted. For A-{112} facets, the asymptotic limit
corresponds to the boundary energies at the limit of infinite facet lengths. The open hexagons denote calculated boundary energies for facet
periods larger than 25 nm. The yellow shaded area indicates the energy range of faceted GB with A-{112} facets for facet periods ranging
from the symmetry allowed minimum length (i.e., nanofaceting) to the limit of infinite facet lengths. (b) Energy difference gA−�3 − gS−�3 as
function of the inclination angle toward {111} and the facet period L. gA−�3 and gS−�3 are the boundary energies of the faceted GBs with {111}
and A-{112} and S-{112} facets, respectively. The solid black curve indicates the boundary between GBs having an A- or S-{112} facet. The
cross-hatched area denotes the stability region of GBs with S-{112} facets. The dashed curve shows the boundary line when DFT-calculated
energies of flat (unfaceted) {112} GBs are considered. The black shaded area marks the region of geometrically unaccessible facet periods and
inclination angles.

of the facet length. This is in agreement with the finding that,
in this case, contributions to the boundary energy arising from
dislocations and/or line force interactions are either negligible
or cancel out. However, faceted GBs with A-{112} facets
show strong dependence on the facet period: Larger boundary
energies are calculated for small facet periods. They asymp-
totically converge to the gf1 + gf2 energy term at long facet
lengths [see Eqs. (2) and (3)]. These findings indicate that
finite length faceting toward {111} and A-{112} boundaries
is energetically unfavorable. Therefore, under conditions of
thermodynamic equilibrium, the facet length will reach the
maximum one that is possible due to the conditions given the
microstructure and grain size. This behavior is similar to the
case of GBs in Al where it was found that the GB tension is
not sufficient to stabilize finite facet lengths [16,26].

Another important result that can be deduced from Fig. 6 is
that with decreasing facet length a transition from A-{112} to
S-{112} facets takes place. Although the gf2 energy contribu-
tion of the A-{112} boundaries are smaller than S-{112} for
all inclination angles, at small facet periods contributions to
the boundary energy arising from the dislocation interactions
dominate. The latter constitute facet junctions with S-{112}
facets energetically favorable at small facet periods. This is
more systematically shown in Fig. 7(a), where the energy
range of faceted GBs consisting of A-{112} facets and facet
periods from the minimum symmetry allowed one to the
asymptotic limit of infinitely long ones, has been been marked
by the yellow shaded region. As can be seen faceted GBs with
A-{112} facets are energetically favorable for all facet periods
only for high inclination angles, i.e., angles larger than ≈80◦.
For all other inclination angles, the thermodynamically most
stable reconstruction depends on the facet period.

Our results are summarized in Fig. 7(b), which shows
the energy difference between the two phases, i.e., between
faceted inclined GB consisting of {111} and A-{112} (gA−�3)
and S-{112} (gS−�3) facets. To estimate the impact of tem-
perature on the phase boundary, we computed the vibrational
contributions to the free energy of flat S- and A-{112} GBs.
We followed the methodology that has been outlined in Ref.
[27]. Including vibrational contribution to the free energy of
the GBs increases the boundary energy difference between
A- and S-{112} GBs by ≈2 meV/Å2 at 1000 K with respect
to to the 0 K results. Including them would result only in a
small upward shift of the phase boundary in Fig. 7(b). To give
a specific example, at an inclination angle of 45◦ a ≈2 nm
upward shift toward larger facet periods is estimated. Since
vibrational effects are negligible, we do not included them in
the phase diagram.

The phase diagram in Fig. 7(b) reveals that the recon-
struction of the facets as well as of the line junctions depend
strongly on the two geometrical characteristics of the facet
junctions, i.e., the inclination angle and the facet period. The
transition from one phase to another has important conse-
quences on (i) the electronic properties of faceted GBs in
mc-Si, (ii) the impurity segregation at the facets as well as
at the line junctions, and (iii) the GB mobility. Previous
studies showed already that overcoordinated atoms and highly
strained bonds at the S-{112} GBs introduce deep states in
the fundamental band gap [10]. In contrast, the reconstructed
A-{112} GB shows no deep states in the fundamental band
gap [10]. Hence, process conditions that stabilize the S-{112}
reconstruction are detrimental for the electronic properties
of mc-Si. Thus, conditions that lead to low inclination an-
gles and/or small facet lengths should be avoided. In an
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experimental or industrial setup, this could be achieved by
long annealing that drives the system toward thermodynamic
equilibrium and thus large grains.

The elastic strain of both S- and A-{112} GBs show a peri-
odic pattern with alternating compressive and tensile regions
along 〈111〉 [see Figs. 5(a) and 5(b)]. Explicitly studying
segregation of impurities to a GB is beyond the scope of
the present paper. However, the results of impurity-free GBs
provide some qualitative insight into impurity segregation.
In this respect, it is important to note that the εxx strain
extends deep into the bulk at the S-{112} facets. Thus dif-
ferent induced segregation profiles at S- and A-{112} GBs
are expected [10,28]. Hence, the segregation profile will be
a function of inclination angle and facet period and will be
thus qualitatively described by the phase diagram if Fig. 7(b).
The strain field at the {111} and S-{112} line junctions is
short range compared to the range of the strain field associated
with flat S-{112} GBs. On the other hand, the strain field
at {111} and A-{112} junctions is long range and originates
from the presence of edge-type dislocation at these junctions.
The latter, in combination with the lack of mirror symmetry
of the A facet, results in two different topologies and impurity
segregation potentials at the two line junctions of these GB
facets. Indeed, a recent study showed that the aforementioned
difference in the topology of the facet junction in mc-Si causes
asymmetric impurity segregation at {111} and A-{112} facet
junctions [13].

GB disconnections are GB line defects. Generally, they
have both step and dislocation character and play a crucial
role on the shear coupled migration [29]. Recent TEM inves-
tigations on Au bicrystals revealed the lack of lattice defects
at the core of disconnections with a height of two lattice
spacings at �11(113) coherent GBs [30]. These boundaries
showed a layer by layer migration. It was also reported that the
shear-induced migration of these GBs was fully reversible and
not affected by the presence of preexisting lattice or GB dis-
locations. This situation is in accord to the twin defects in Si
where disconnections are {112} steps at the {111} boundary.
This corresponds to small facet periods or small inclination
angles. Hence, as it is shown in Fig. 7(b), the steps consist
of S-{112} facets, i.e., there are no GB dislocations at the
line junctions. Therefore, a similar mechanism as described is
expected to govern the shear induced migration of twins in Si,
i.e., migration will be fully reversible and will not be affected
by the presence of other extended lattice defects.

IV. CONCLUSIONS

In the present paper, we have employed DFT and large-
scale MEAM potential calculations to study the structure,
energetics, and strain associated with �3 tilt GBs having
the 〈110〉 rotation axis in Si. Based on these calculations,
we derive a phase diagram of these boundaries. This phase
diagram demonstrates that (i) these GBs are intrinsically
unstable against faceting toward {111} and {112} facets and
(ii) the properties of the facets and of the line junctions is
the result of an intricate interplay between GB energies and
long-range strain interactions. Specifically, we find that at
low misorientation angles and/or small facet periods, long-
range interactions dominate and S-{112} facets are favored.

Nevertheless, at large facet periods and inclination angles,
the lower energy of the A-{112} facets compensate the strain
interactions and these facets are energetically favored.

The significance of being able to construct such defect
phase diagrams goes beyond the case of GBs in mc-Si.
They shed light upon GB faceting phenomena, specifically
in conjunction with the materials’ microstructure. The pic-
ture deduced by this phase diagram contradicts the common
perception that the properties of faceting are merely driven
by the anisotropic GB energies. Although anistropic GB en-
ergies are a prerequisite for GB faceting, the phase diagram
reveals that higher energy metastable GB phases are stabilized
by thermodynamics and not kinetics when constituting the
facets at line junctions. This insight provides critical infor-
mation when designing electronic and structural materials:
Microstructures that allow for large facet periods stabilize
line junctions accommodated by dislocations. In contrast,
fine granular structures that limit facet periods promote line
junctions without extended line defects and long-range strain
fields. This also has immediate implications on the topology
of line junctions, the strain-driven impurities’ segregation, and
mobility of GBs. In general, GB phase diagrams that highlight
the interplay between geometry, GB energies, and long-range
strain fields constitute an indispensable tool in describing,
predicting, and designing materials’ microstructure.
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APPENDIX: MEAM POTENTIAL PARAMETRIZATION

A large number of valence force field models have been
developed and applied to study defects in Si—among others,
Tersoff [32], Stillinger-Weber (SW) [33], bond-order poten-
tials [34,35], and MEAM potentials [36,37]. However, appli-
cation of these potentials to study important materials proper-
ties such as GSFE reveals critical shortcomings. Specifically,
they fail to provide a quantitative and qualitative description
of GSFE curves with respect to DFT (see Fig. 8). The GSFE
is a material property which relates dislocation cores and
the intrinsic ductility of the material. Smooth GSFE curves
can also be considered as a benchmark of the interatomic
screening under shear conditions.

The second-nearest-neighbor (2NN) MEAM potential is a
modification of the original MEAM potential [31] and par-
tially include 2NN interactions. 2NN MEAM potentials have
been parametrized and employed to a wide range of elements
and alloys (see Ref. [38] and NIST Interatomic Potentials
Repository [39–41]). In the present paper, we parametrize
and employ a 2NN MEAM potential to investigate faceting
of GBs in Si. A detailed description of the 2NN MEAM
formalism can be found in Ref. [42]. Here the parametrization
of the potential is presented. Although the correlation of
the parameters to physical properties is complicated, some
parameters play a more dominant role on certain physical
properties [43]. This allows us to apply a parametric study
and systematically fit the parameters to these properties.
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FIG. 8. GSFE profiles as function of fractional crystal displace-
ment along (a) 〈110〉 and (b) 〈112〉 shear in the {111} plane obtained
from DFT, the present 2NN MEAM potential, as well as the 1NN
MEAM (Baskes) [31], SW [33], bond-order [34], and Tersoff poten-
tials [32].

The 2NN MEAM potentials formalism consists of 16
parameters for a pure element. These are listed in Table I. The
cohesive energy Ec, nearest-neighbor equilibrium distance re,
and parameters α and δ enter the zero-temperature Rose’s
universal equation of state. α is also a function of the cohesive
energy and bulk modulus B. The remaining 12 parameters
include the four decay lengths of the atomic partial electron
densities (βi, i = 0, 1, 2, 3), the three scaling factors of the
background electron density (ti, i = 1, 2, 3), the scaling factor
of the embedding function energy (A), the two parameters
which control many-body screening (Cmin and Cmax), and
the cutoff distance (rc) and cutoff range (	r) of the atomic
electron densities. The parametrization of the first-nearest-
neighbor (1NN) MEAM potential for Si by Baskes is used
as the basis for the present potential [31]. In the present paper,
as in the original Baskes parametrization, the values of Ec, re,
and of the bulk modulus B are considered from experiment
[44–46]. Cmax, β1 − β3, α, t1, rc, and 	r are set to the same
value as in the 1NN MEAM formalism [31].

It has been shown that δ can be fitted to the pressure
derivative of the bulk modulus [43]. In the present paper, the

MEAM-calculated pressure derivative of the bulk modulus is
in good agreement with DFT calculations, i.e., 4.15 vs 4.20,
respectively, even with neglecting the δα∗3 term in the Rose’s
equation of state. Therefore, in the present parametrization, δ

is set to 0.0.
Cmin and β0 are used to fit the potential to the DFT-

calculated GSFE curve for shear along 〈110〉 in the {111}
shuffle plane. The GSFE curve along 〈112〉 in the {111}
shuffle plane is used to benchmark the potential. As can be
seen in Fig. 8, the present potential provides an excellent de-
scription, with respect to DFT, for both shear configurations.
On the contrary, the original 1NN MEAM potential, the SW,
and the bond-order potentials fail to provide both quantitative
and qualitative agreement with DFT. Specifically, the present
potential, in agreement with DFT, shows the possibility of
dissociated dislocation having a stable stacking fault energy
while the bond-order potential shows a flat maximum. The
1NN MEAM and SW potentials yield discontinuous profiles
and/or spurious local minima in the region of the unstable
stacking fault.

Our parametric study reveals that spurious oscillations
in the GSFE curve found in the previous 1NN MEAM Si
potential (see Fig. 8) can be removed by lowering the value
of Cmin from the value of 2.0 in the original 1NN MEAM
[31]. However, this increases the GB energies with respect
to the DFT calculated values. Therefore, there is a trade-off
between two important properties in the description of GB
faceting: The quantitative and qualitative description of GB
energies and the interatomic screening at the region of the
facet junctions where the core of the partial dislocations is
located. We have explicitly checked that the aforementioned
increase in the GB energies caused by the lower values of Cmin

has no effect on the description of the long range interactions
of the line junctions.

Parameter t2 was determined by fitting the elastic constants
of Si. The elastic constants are calculated using volume
conserving strain deformations [47]. The elastic constants
calculated by the present 2NN MEAM (P-MEAM) are in
excellent agreement with the DFT calculated as well as exper-
imentally obtained values (see Table II). Parameters A and t3
are used to fit the cohesive energies of diamond, fcc, bcc, and
β-tin Si structures. The cohesive energy differences of these
structures with respect to diamond Si are listed in Table II.
Although, the present MEAM potential overestimates these
energy differences, it provides qualitative agreement to DFT.
A transition from diamond cubic to β tin crystal phase of bulk
Si takes place at high compressive pressures of ≈10-13 GPa
[48,49]. Although compressive strains are present at the {112}
GBs [see Figs. 5(a) and 5(b)], the overestimation of the β tin
cohesive energy does not affect the good qualitative descrip-
tion of the �3 GB energetics by P-MEAM. This has been
validated by (i) ensuring good quantitative description of the

TABLE I. 2NN MEAM potential parameter set. The parameters fitted in the present paper are shown in bold. The cohesive energy, Ec, and
the equilibrium nearest-neighbor distance, re, are in eV/atom and Å, respectively.

Ec re β0 β1 β2 β3 α A t1 t2 t3 Cmin Cs rc 	r δ

4.63 2.35 4.5 4.8 5.5 4.8 4.87 0.80 3.3 3.60 −2.3 1.60 2.8 4.0 0.1 0.0
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TABLE II. Calculated physical properties of Si using the present 2NN MEAM potential (P-MEAM) as well as previous 1NN MEAM
(B-MEAM) [31], bond order (E-bond order) [34], and SW [33] potentials compared to DFT and experimental data. All the properties are for
diamond cubic Si unless otherwise denoted. Edia is the cohesive energy of Si in the ground-state diamond crystal and 	E denotes the cohesive
energy differences between the diamond and the fcc, bcc, and β-tin Si structures in meV/atom. The lattice parameters a are in Å and the
bulk modulus and the elastic constants in GPa. The energies of the 1 × 1 (110), (110), and (111) surfaces are denoted as E(100), E(110), and
E(111), respectively, and the GB energies of the {111} and S- and A-{112}, denoted as E�3{111}, ES−�3{112}, and EA−�3{112}, respectively, are in
meV/Å2. The vacancy formation energy Ev is in eV.

P-MEAM B-MEAM E-bond order SW DFT Experimental

diamond Edia –4.63 –4.63 –4.628 –4.336 –4.75f,–4.65d –4.62i

a 5.431 5.427 5.429 5.431 5.403a, 5.43d 5.431e

fcc-dia 	E 771.21 468.89 652.24 396.28 449a, 537.48b, 566d

a 4.282 4.20 3.85 4.14 3.817a, 3.866b, 3.885d

bcc-dia 	E 754.85 419.85 505.97 281.04 432a, 519.69b, 525d

a 3.312 3.198 3.044 3.24 3.044a, 3.087b, 3.088d

β tin -dia 	E 613.75 320.86 423.14 199.68 212a, 295.46d

a 5.079 4.95 4.87 4.97 4.91a, 4.97d

c/a 0.553 0.545 0.527 0.56 0.55a, 0.55d

Bulk modulus B 96.53 96.89 98.38 101.18 96.19a 99h

B′ 4.20 4.22 4.4 2.92 4.15a 4.2h

Elastic constant C11 162.40 162.44 169.33 151.42 160c 166e

C12 65.58 65.44 65.18 76.73 63c 64e

C44 77.74 73.25 60.41 56.44 82c 80e

Ev 3.45 2.94 3.13 4.33 3.64a

E{100} 124.08 102.25 121.86 147. 02 147.93c 132.95f

E{110} 94.17 118.10 76.47 103.96 104.86c 94.25f

E{111} 78.69 102.56 62.35 84.88 107.36c 76.77f

ES−�3{112} 69.89 66.50 59.75 59.38 42.24a, 41.8g

EA−�3{112} 55.3 50.52 51.01 43.16 24.86a, 29.3g

E�3{111} 0.40 0.0 0.0 0.0 0.42a, 0.6g

aand; bdenote DFT-calculated properties employing LDA and GGA, respectively.
cReference [50].
dReference [51].
eReference [52].
fReference [53].
gReference [11].
hReference [54].
iReference [44].

GSFE including a large number of highly deformed structures
at the interface and (ii) demonstrating a qualitative description
of the energetics and the atomic volumes of the competing
bulk crystal phases. These validation benchmarks show that
P-MEAM provides an excellent qualitative description of �3
GB energetics and atomic structures.

Using the P-MEAM, we calculate the GB formation ener-
gies of �3 {111} and {112} tilt GBs with the 〈110〉 rotation
axis. The GB energies of {111} and S-{112} are 0.4 and
69.89 meV/Å2, respectively. The GB energy of the A-{112}
is by 14.59 meV/Å2 lower than its symmetric counterpart.

As has already been discussed, the P-MEAM calculated ener-
gies of the {112} GBs are overestimated. However, the GB
energy difference between A- and S-{112} is in excellent
agreement with the DFT results (17.38 meV/Å2). Moreover,
the P-MEAM calculated elastic constants are in excellent
agreement to DFT. These agreements imply that the strain
interaction between the facet junctions as well as transitions
between S- and A-{112} GBs as function of inclination angle
and/or facet length are correctly described by P-MEAM [see
Fig. 7(b)]. Thus, the present MEAM potential provides an
excellent qualitative description of faceting.

[1] A. P. Sutton and R. W. Balluffi, Interfaces in Crystalline Mate-
rials, Monographs on the Physics and Chemistry of Materials,
Vol. 51 (Clarendon Press, Oxford, 1996).

[2] E. O. Hall, Proc. Phys. Soc. Sec. B 64, 742 (1951).
[3] R. W. Armstrong, Mater. Trans. 55, 2 (2014).
[4] M. F. R. Schweinfest and A. Paxton, Nature 432, 1008 (2004).
[5] K. Scheerschmidt and M. Werner, Phys. Status Solidi A 202,

2368 (2005).

[6] F. Schindler, A. Fell, R. Müller, J. Benick, A. Richter, F.
Feldmann, P. Krenckel, S. Riepe, M. C. Schubert, and S. W.
Glunz, Sol. Energy Mater. Sol. Cells 185, 198 (2018).

[7] A. Peaker, V. Markevich, B. Hamilton, G. Parada, A. Dudas,
A. Pap, E. Don, B. Lim, J. Schmidt, L. Yu, Y. Yoon, and G.
Rozgonyi, Phys. Status Solidi A 209, 1884 (2012).

[8] K. M. Yeh, C. K. Hseih, W. C. Hsu, and C. W. Lan, Prog.
Photovolt: Res. Appl. 18, 265 (2010).

083604-9

https://doi.org/10.1088/0370-1301/64/9/302
https://doi.org/10.2320/matertrans.MA201302
https://doi.org/10.1038/nature03198
https://doi.org/10.1002/pssa.200521132
https://doi.org/10.1016/j.solmat.2018.05.006
https://doi.org/10.1002/pssa.201200216
https://doi.org/10.1002/pip.964


ALAM, LYMPERAKIS, AND NEUGEBAUER PHYSICAL REVIEW MATERIALS 4, 083604 (2020)

[9] A. Garg, W. A. T. Clark, and J. P. Hirth, Philos. Mag. A 59, 479
(1989).

[10] D. Zhao and Y. Li, Acta Mater. 168, 52 (2019).
[11] B. Ziebarth, M. Mrovec, C. Elsässer, and P. Gumbsch, Phys.

Rev. B 91, 035309 (2015).
[12] D. Zhao and Y. Li, J. Alloys Compd. 712, 599 (2017).
[13] C. H. Liebscher, A. Stoffers, M. Alam, L. Lymperakis, O.

Cojocaru-Mirédin, B. Gault, J. Neugebauer, G. Dehm, C.
Scheu, and D. Raabe, Phys. Rev. Lett. 121, 015702 (2018).

[14] C. Herring, Phys. Rev. 82, 87 (1951).
[15] A. P. Sutton and R. W. Balluffi, Interfaces in Crystalline Mate-

rials, Monographs on the Physics and Chemistry of Materials,
Vol. 51 (Clarendon Press, Oxford, 1996), Chap. 4.

[16] J. C. Hamilton, D. J. Siegel, I. Daruka, and F. Léonard, Phys.
Rev. Lett. 90, 246102 (2003).

[17] T. Ference and R. Balluffi, Scr. Metall. 22, 1929 (1988).
[18] T. Hsieh and R. Balluffi, Acta Metall. 37, 2133 (1989).
[19] H. Zhao, L. Huber, W. Lu, N. J. Peter, D. An, F. De Geuser, G.

Dehm, D. Ponge, J. Neugebauer, B. Gault, and D. Raabe, Phys.
Rev. Lett. 124, 106102 (2020).

[20] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169
(1996).

[21] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
[22] S. Plimpton, J. Comput. Phys. 117, 1 (1995).
[23] N. Sakaguchi, H. Ichinose, and S. Watanabe, Mater. Trans. 48,

2585 (2007).
[24] C. B. Feng, J. L. Nie, X. T. Zu, M. M. Al-Jassim, and Y. Yan, J.

Appl. Phys. 106, 113506 (2009).
[25] L. Lymperakis, M. Friák, and J. Neugebauer, Eur. Phys. J. Spec.

Top. 177, 41 (2009).
[26] Z. Wu, Y. Zhang, and D. Srolovitz, Acta Mater. 57, 4278

(2009).
[27] A. I. Duff, L. Lymperakis, and J. Neugebauer, Phys. Status

Solidi B 252, 855 (2015).
[28] D. Zhao and Y. Li, Comput. Mater. Sci. 143, 80 (2018).
[29] J. Han, S. L. Thomas, and D. J. Srolovitz, Prog. Mater. Sci. 98,

386 (2018).
[30] Q. Zhu, G. Cao, J. Wang, C. Deng, J. L. abd Ze Zhang, and S. X.

Mao, Nat. Commun. 10, 156 (2019).
[31] M. I. Baskes, Phys. Rev. B 46, 2727 (1992).

[32] J. Tersoff, Phys. Rev. B 39, 5566 (1989).
[33] F. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262 (1985).
[34] P. Erhart and K. Albe, Phys. Rev. B 71, 035211 (2005).
[35] P. Käshammer and T. Sinno, J. Appl. Phys. 118, 095301 (2015).
[36] K. Kang and W. Cai, Philos. Mag. 87, 2169 (2007).
[37] T. J. Lenosky, B. Sadigh, E. Alonso, V. V. Bulatov, T. D. de

la Rubia, J. Kim, A. F. Voter, and J. D. Kress, Model. Simul.
Mater. Sci. Eng. 8, 825 (2000).

[38] B.-J. Lee, W.-S. Ko, H.-K. Kim, and E.-H. Kim, Calphad 34,
510 (2010).

[39] https://www.ctcms.nist.gov/potentials, Website DOI:
10.18434/m37.

[40] C. A. Becker, F. Tavazza, Z. T. Trautt, and R. A. B. de Macedo,
Curr. Opin. Solid State Mater. Sci. 17, 277 (2013).

[41] L. M. Hale, Z. T. Trautt, and C. A. Becker, Model. Simul. Mater.
Sci. Eng. 26, 055003 (2018).

[42] B. Jelinek, S. Groh, M. F. Horstemeyer, J. Houze, S. G. Kim,
G. J. Wagner, A. Moitra, and M. I. Baskes, Phys. Rev. B 85,
245102 (2012).

[43] B.-J. Lee, M. I. Baskes, H. Kim, and Y. K. Cho, Phys. Rev. B
64, 184102 (2001).

[44] B. Farid and R. W. Godby, Phys. Rev. B 43, 14248 (1991).
[45] Y. Okada and Y. Tokumaru, J. Appl. Phys. 56, 314 (1984).
[46] J. J. Hall, Phys. Rev. 161, 756 (1967).
[47] O. Beckstein, J. E. Klepeis, G. L. W. Hart, and O. Pankratov,

Phys. Rev. B 63, 134112 (2001).
[48] A. Mujica, A. Rubio, A. Muñoz, and R. J. Needs, Rev. Mod.

Phys. 75, 863 (2003).
[49] W. Purwanto, H. Krakauer, and S. Zhang, Phys. Rev. B 80,

214116 (2009).
[50] L. Pastewka, A. Klemenz, P. Gumbsch, and M. Moseler, Phys.

Rev. B 87, 205410 (2013).
[51] J. F. Justo, M. Z. Bazant, E. Kaxiras, V. V. Bulatov, and S. Yip,

Phys. Rev. B 58, 2539 (1998).
[52] W. M. Haynes, CRC Handbook of Chemistry and Physics (CRC

Press, Boca Raton, FL, 2014).
[53] R. Jaccodine, J. Electrochem. Soc. 110, 524 (1963).
[54] T. Soma and H. M. Kagaya, in Properties of Silicon (The

Institution of Electrical Engineers, Inspec, London, 1988),
pp. 33–36.

083604-10

https://doi.org/10.1080/01418618908229780
https://doi.org/10.1016/j.actamat.2019.02.014
https://doi.org/10.1103/PhysRevB.91.035309
https://doi.org/10.1016/j.jallcom.2017.04.111
https://doi.org/10.1103/PhysRevLett.121.015702
https://doi.org/10.1103/PhysRev.82.87
https://doi.org/10.1103/PhysRevLett.90.246102
https://doi.org/10.1016/S0036-9748(88)80240-0
https://doi.org/10.1016/0001-6160(89)90138-7
https://doi.org/10.1103/PhysRevLett.124.106102
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.2320/matertrans.MD200706
https://doi.org/10.1063/1.3266018
https://doi.org/10.1140/epjst/e2009-01167-6
https://doi.org/10.1016/j.actamat.2009.05.026
https://doi.org/10.1002/pssb.201451687
https://doi.org/10.1016/j.commatsci.2017.11.001
https://doi.org/10.1016/j.pmatsci.2018.05.004
https://doi.org/10.1038/s41467-018-08031-x
https://doi.org/10.1103/PhysRevB.46.2727
https://doi.org/10.1103/PhysRevB.39.5566
https://doi.org/10.1103/PhysRevB.31.5262
https://doi.org/10.1103/PhysRevB.71.035211
https://doi.org/10.1063/1.4929637
https://doi.org/10.1080/14786430701222739
https://doi.org/10.1088/0965-0393/8/6/305
https://doi.org/10.1016/j.calphad.2010.10.007
https://www.ctcms.nist.gov/potentials
https://doi.org/10.1016/j.cossms.2013.10.001
https://doi.org/10.1088/1361-651X/aabc05
https://doi.org/10.1103/PhysRevB.85.245102
https://doi.org/10.1103/PhysRevB.64.184102
https://doi.org/10.1103/PhysRevB.43.14248
https://doi.org/10.1063/1.333965
https://doi.org/10.1103/PhysRev.161.756
https://doi.org/10.1103/PhysRevB.63.134112
https://doi.org/10.1103/RevModPhys.75.863
https://doi.org/10.1103/PhysRevB.80.214116
https://doi.org/10.1103/PhysRevB.87.205410
https://doi.org/10.1103/PhysRevB.58.2539
https://doi.org/10.1149/1.2425806

